4. Setup of the model

Setup python version

Python

CWatM requires having Python. Downloading Python and the required Python packages is covered in our YouTube tutorial.

Note

CWatM is tested for Python 3.7+. We recommend using the most recent release.

Warning

a 64-bit version is necessary. This is generally the download default.

External libraries

These five Python packages are needed:

  1. NumPy

  2. SciPy

  3. netCDF4

  4. pandas

These four libraries can be installed with pip, conda, or downloaded at Unofficial Windows Binaries for Python Extension Packages

  1. GDAL

Note

Troublemaker GDAL
Installing GDAL via pip can be troublesome. We recommend downloading the library from
as GDAL-3.0.4-cp311-cp311m-win_amd64.whl (depending on your Python version) and installing as:
pip install C:/Users/XXXXX/Downloads/GDAL-3.0.4-cp37-cp37m-win_amd64.whl

Sometimes problems occur if you have installed GDAL separately (or a software did, like QGIS)

These additional packages are used for the post-processing Notebooks (in CWatM/Toolkit)

These additional packages are used for CWatM-MODFLOW

Installing

CWatM can be cloned through our CWatM GitHub repository.

For those new to GitHub, we recommend using GitHub desktop.

Getting CWatM with GitHub desktop is covered in our YouTube tutorial.

Input data to run CWatM at 30 arcminutes (~50 km x 50km) are available through our CWatM-Earth-30min GitHub repository.

C++ libraries

For the computational time demanding parts e.g. routing, CWatM comes with a C++ library. A pre-compiled version is included for Windows and Linux. Normally, you don’t have to do anything and the pre-compiled version should just work.

Pre-compiled C++ libraries

Windows and CYGWIN_NT-6.1
a compiled version is provided and CWatM is detecting automatically which system is running and which compiled version is needed
Linux
For Cygwin linux a compiled version t5cyg.so is provided in ../cwatm/hydrological_modules/routing_reservoirs/ for version CYGWIN_NT-6.1.
If you use another cygwin version please compile it by yourself and name it t5_linux.so

For Linux Ubuntu a compiled version is provided as t5_linux.so. The file is in ../cwatm/hydrological_modules/routing_reservoirs/

Note

If you use another Linux version or the compiled version is not working or you have a compiler which produce faster executables please compile a version on your own.

Compiling a version

C++ sourcecode is in ../cwatm/hydrological_modules/routing_reservoirs/t5.cpp

Note

A compiled version is already provided for Windows and Linux.

Windows

A compiled version is provided, but maybe you have a faster compiler than the “Minimalist GNU for Windows” or “Microsoft Visual Studio 14.0” we used.

To compile with g++:

..\g++ -c -fPIC -Ofast t5.cpp -o t5.o
..\g++ -shared -Ofast -Wl,-soname,t5.so -o t5.so  t5.o

To compile with Microsoft Visual Studio 14.0:

call "C:\Program Files (x86)\Microsoft Visual Studio 14.0\VC\bin\amd64/vcvars64.bat"
cl /LD /O2 t5.cpp

Note

We used Visual Studio, because it seems to be computational faster
the libray used with Windows is named t5.dll, if you generate a libray t5.so the filename in ../cwatm/management_modules/globals.py has to be changed!

Linux

To compile with g++:

..\g++ -c -fPIC -Ofast t5.cpp -o t5_linux.o
..\g++ -shared -Ofast -Wl,-soname,t5_linux.so -o t5_linux.so  t5_linux.o

    or

    ..\g++ -c -Ofast t5.cpp -o t5_linux.o
..\g++ -shared -Ofast -Wl,-soname,t5_linux.so -o t5_linux.so  t5_linux.o

Warning

Please rename your compiled version to t5_linux.so! At the moment the file t5_linux.so is compiled with Ubuntu Linux

Error and exeption handling

We try to make our program behave properly when encountering unexpected conditions. Therefore we caption a number of possible wrong inputs.

If you get an output with an error number please look at Error handling

Test the Python version

From a terminal inside the CWatM folder, Run from the command line:

python run_cwatm.py

The output should be:

Running under platform:  Windows  **(or Linux etc)**
CWatM - Community Water Model
Authors: ...
Version: ...
Date: ...

Warning

If python is not set in the environment path, the full path of python has to be used

Warning

We are using run_cwatm.py inside the main repository (CWatM\run_cwatm.py), not one folder deeper (CWatM\cwatm\run_cwatm.py).

Run the Python version

Run from the command line:

python run_cwatm.py settingsfile flags

example (from inside the CWatM folder):

python run_cwatm.py settings.ini

or with more information and an overview of computational runtime:

python run_cwatm.py settings.ini -l -t

Warning

If python is not set in the environment path, the full path of python has to be used

Warning

The model needs a settings file as an argument. See: Settings file

Note

it is also possible to use paths with white spaces or dots. An easy way to avoid this is using relative paths, but is is also possible with absolute paths.

"C:/Python 37/python" "C:/CWatM Hydrologic.modeling/CWatM/run_cwatm.py" "C:/CWatM Hydrologic.modeling/settings .rhine30min.ini" -l

But in the settingsfile do not use apostrophe "" or '':
PathRoot = C:/CWatM Hydrologic.modeling

Flags

Flags can be used to change the runtime output on the screen

example:

-q --quiet       output progression given as .
-v --veryquiet   no output progression is given
-l --loud        output progression given as time step, date and discharge
-c --check       input maps and stack maps are checked, output for each input map BUT no model run
-h --noheader    .tss file have no header and start immediately with the time series
-t --printtime   the computation time for hydrological modules are printed
    -w --warranty    copyright and warranty information

NetCDF meta data

The format for spatial data for output data is netCDF. In the meta data file information can be added e.g. a description of the parameter

Note

It is not necessary to change this file! This is an option to put additional information into output maps

Test the data

The model is only as good as the data!
To give out a list of data and to check the data the model can run a check.

example:

python run_cwatm settings1.ini -c
or
python run_cwatm settings1.ini -c > checkdata.txt

A list is created with:

Name:      Name of the variable
Filename:  filename or if the value if it is a fixed value
nonMV:     non missing value in 2D map
MV:        missing value in 2D map
lon-lat:   longitude x latitude of 2D map
CompressV: 2D is compressed to 1D?
MV-comp:   missing value in 1D
Zero-comp: Number of 0 in 1D
NonZero:   Number of non 0 in 1D
min:       minimum in 1D (or 2D)
mean:      mean in 1D (or 2D)
max:       maximum in 1D (or 2D)

example:

Name                          File/Value                                    nonMV         MV    lon-lat   Compress    MV-comp  Zero-comp    NonZero        min       mean        max
MaskMap                       put5min_netcdf/areamaps/rhine5min.map          5236          0      68x77      False          0       2404       2832       0.00       0.54       1.00
Ldd                           _5min/input5min_netcdf/routing/ldd.nc          5236          0      68x77      False          0          0       5236       1.00       5.34       9.00
Mask+Ldd                                                                     2832          0      68x77       True          0       2832          0       0.00       0.00       0.00
CellArea                      n_netcdf/landsurface/topo/cellarea.nc          2832          0      68x77       True          0          0       2832   5.31E+07   5.63E+07   5.94E+07
precipitation_coversion       86.4                                              -          -          -          -          -                 86.40
evaporation_coversion         1.00                                              -          -          -          -          -                  1.00
crop_correct                  1.534                                             -          -          -          -          -                  1.53
NumberSnowLayers              7                                                 -          -          -          -          -                  7.00
GlacierTransportZone          3                                                 -          -          -          -          -                  3.00
ElevationStD                  min_netcdf/landsurface/topo/elvstd.nc          2832          0      68x77       True          0          0       2832       0.04      78.67     672.68
...
...

Settings file

The settings file is controlling the CWatM run

1######## ##          ##  ####  ######  ##    ##
2##       ##          ## ##  ##   ##   ####  ####
3##        ##        ##  ##  ##   ##   ## #### ##
4##        ##   ##   ## ########  ##  ##   ##   ##
5##         ## #### ##  ##    ##  ##  ##        ##
6##         ####  #### ##      ## ## ##          ##
7##########  ##    ##  ##      ## ## ##          ##
8
9# Community Water Model Version 0.99

Components of the settings file

General flags

General flags are set in the first paragraph For example: If Temperature data are in unit ° Celsius ot Kelvin

15[OPTIONS]
16#-------------------------------------------------------
17# OPTION - to switch on/off
18#-------------------------------------------------------
19
20# Data otions
21# if temperature is stored in Kelvin instead Celsius
22TemperatureInKelvin = True
23# if lat/lon the area has to be user defined = precalculated
24gridSizeUserDefined = True
25
26#-----------------------------------------------
27# Evaporation: calculate pot. evaporation (True) or use precalculated pot.evaporation map stacks (False)
28calc_evaporation = False
29
30#-----------------------------------------------
31# Irrigation and water demand
32
33# if irrigation is included, otherwise paddy and non paddy is put into 'grassland'
34includeIrrigation = True
35# if water demand from irrigation, industry and domestic is included
36includeWaterDemand = False
37# Water allocation
38# if water demand and availability is calculated for region to compare demand vs. avail
39usingAllocSegments = False
40# limit abstraction to available groundwater (True) include fossil groundwater (False)
41limitAbstraction = False
42
43# Environmental Flow
44calc_environflow = False
45use_environflow = False
46
47#-----------------------------------------------
48# Soil 
49# use preferential flow, that bypasses the soil matrix and drains directly to the groundwater (not for irrPaddy)
50preferentialFlow = False
51# Capillar rise
52CapillarRise = True
53
54#-----------------------------------------------
55# Routing
56
57# if runoff concentration to the edge of a cell is included
58includeRunoffConcentration = True
59# Waterbodies like lakes and reservoirs
60includeWaterBodies = True
61# kinematic wave routing, if False no routing is calculated
62includeRouting = True
63
64#-----------------------------------------------
65# Inflow from outside of the modelled area
66inflow = False
67
68# --- Reporting & Debugging ------------------- ----------------------------------------------
69# Reporting options
70writeNetcdfStack = True
71reportMap = True
72reportTss = True
73# Checking water balance (for debugging)
74calcWaterBalance = False
75sumWaterBalance = False
76# use additional PCRaster GIS commands
77PCRaster = False
78
79
80
81
82
83
84#-------------------------------------------------------
85# DEFINITIONS OF PARAMETERS

NetCDF meta data

The format for spatial data for input and output data is netCDF. For output data the basic information are given in the settingsfile

102[NETCDF_ATTRIBUTES]
103institution = IIASA
104title = Global Water Model - WATCH WDFEI
105metaNetcdfFile = $(FILE_PATHS:PathRoot)/source/metaNetcdf.xml

For each output file the specific information about units, variable name, displayed variable name is given in the metaNetcdf.xml. See: Output Meta NetCDF information

Path of data, output

Note

Further on the pathes can be used as placeholders

88#-------------------------------------------------------
89[FILE_PATHS]
90#-------------------------------------------------------
91PathRoot = E:/CWATM_rhine
92
93PathOut = $(PathRoot)/output
94PathMaps = $(PathRoot)/cwatm_input
95PathMeteo = $(PathRoot)/climate

Defining the modeling area

In general the input data are stored and used at global scale. The modeling area can be defined by:

  • a mask map e.g.: $(FILE_PATHS:PathRoot)/source/rhine30min.tif

  • coordinates e.g.: 14 12 0.5 5.0 52.0

  • lowest point of a catchment e.g.: 6.25 51.75

Note

The mask map can be a .tif, PCraster or a netCDF format
The coordinates have the format: Number of Cols, Number of rows, cellsize, upper left corner X, upper left corner Y
The point location (lon lat) will be used to create the catchment upstream of this point

Warning

If you use a mask map, make sure you do not use blanks in the file path or name!

108# AREA AND OUTLETS
109#-------------------------------------------------------
110[MASK_OUTLET]
111
112# Area mask
113# A pcraster map, tif or netcdf map e.g.  $(FILE_PATHS:PathRoot)/data/areamaps/area_indus.map
114# or a retancle: Number of Cols, Number of rows, cellsize, upper left corner X, upper left corner Y 
115MaskMap = $(FILE_PATHS:PathRoot)/source/rhine30min.tif
116#MaskMap = 14 12 0.5 5.0 52.0
117
118
119#-------------------------------------------------------
120# Station data
121# either a map e.g. $(FILE_PATHS:PathRoot)/data/areamaps/area3.map
122# or a location coordinates (X,Y) e.g. 5.75 52.25 9.25 49.75 )
123# Lobith/Rhine
124Gauges = 6.25 51.75
125
126# if .tif file for gauges, this is a flag if the file is global or local
127# e.g. Gauges = $(FILE_PATHS:PathRoot)/data/areamaps/gaugesRhine.tif
128GaugesLocal = True

Note

If you start with a basin defined by the outlet of a basin e.g. 6.25 51.75
You can generate a new mask map for the following runs by:
savebasinmap = True in [OPTIONS]
a basin.tif is generated in the output folder, which you can copy and use next time as:
MaskMap = your_directory/basin.tif

Defining the time

The start and end time have to be defined. Spin-up time is the time for warming up (results will be stored after the spin-up time)

Note

The time can be given as date: dd/mm/yyyy or as relative date: number (but then CalendarDayStart has to be defined)

Note

Spin-up time can be given as date or number

130#-------------------------------------------------------
131[TIME-RELATED_CONSTANTS]
132#-------------------------------------------------------
133
134# StepStart has to be a date e.g. 01/06/1990
135# SpinUp or StepEnd either date or numbers 
136# SpinUp: from this date output is generated (up to this day: warm up)
137
138StepStart = 1/1/1990
139SpinUp =  1/01/1995
140StepEnd =  31/12/2010

Initial conditions

Initial conditions can be stored and be loaded in order to initialise a warm start of the model

Note

Initial conditions are store as one netCDF file with all necessary variables

145#-------------------------------------------------------
146[INITITIAL CONDITIONS]
147#-------------------------------------------------------
148
149# for a warm start initial variables a loaded
150# e.g for a start on 01/01/2010 load variable from 31/12/2009
151load_initial = False
152initLoad = $(FILE_PATHS:PathRoot)/init/Rhine_19891231.nc
153
154# saving variables from this run, to initiate a warm start next run
155# StepInit = saving date, can be more than one: 10/01/1973 20/01/1973
156save_initial = False
157initSave = $(FILE_PATHS:PathRoot)/init/Rhine
158StepInit = 31/12/1989 31/12/2010

StepInit indicate the date(s) when initial conditions are saved:

StepInit = 31/12/1989
StepInit = 31/12/1989 31/12/2010
StepInit = 31/12/1989 5y
here: second value in StepInit is indicating a repetition of year(y), month(m) or day(d),
e.g. 2y for every 2 years or 6m for every 6 month

Output

Output can be spatial/time as netCDF4 map stacks
and/or time series at specified points

Note

For additional information see Model Output

Output can be as maps and time series:

  • per day [Daily]

  • total month [MonthTot], average month [MonthAvg], end of month [MonthEnd]

  • total year [AnnualTot], average year [AnnualAvg], end of year [AnnualEnd]

  • total sum [TotalTot], total average [TotalAvg]

For each of the following sections output can be defined for different variables:

  • Meteo

  • Snow

  • Soil for different land cover (forest, grassland, irrigated land, paddy irrigated)

  • Water demand

  • Groundwater

  • River routing

  • Lakes and reservoirs

Or output can be defined in the section [output]

An output directory can be defined and for each sort of output the variable(s) can be set:

OUT_ defines that this variable(s) are output
MAP_ or TSS_ defines if it is a spatial map or a time series of point(s)
AreaSum_ or AreaAvg_ after TSS_ defines if the catchment sum of average upstream of the point is calculated
Daily or MonthAvg or .. is specifying the time
The variable is given after the equal sign e.g. * = discharge*
If more than one variable should be used for output, split with ,
E.g. OUT_MAP_Daily = discharge -> daily spatial map of discharge

As example output for precipitation, temperature and discharge is shown here:

# OUTPUT maps and timeseries
OUT_Dir = $(FILE_PATHS:PathOut)
OUT_MAP_Daily =
OUT_MAP_MonthEnd =
OUT_MAP_MonthTot = Precipitation, Tavg
OUT_MAP_MonthAvg =

OUT_TSS_MonthTot = Precipitation, Tavg   # monthly total precipitation and average temperature
OUT_TSS_Daily = discharge                # daily discharge
OUT_TSS_MonthEnd = discharge
OUT_TSS_AnnualEnd = discharge

OUT_TSS_AreaSum_Daily = Precipitation    # daily sum of precipitation for the upstream catchment
OUT_TSS_AreaAvg_MonthAvg = runoff        # monthly average sum of runoff for the upstream catchment

Note

For each variable the meta data information can be defined in Output Meta NetCDF information

Reading information

Information will be read in from values in the settings file Here the value definitions for [SNOW] is shown:

279#-------------------------------------------------------
280[SNOW]
281#-------------------------------------------------------
282
283# Number of vertical Snow layers
284NumberSnowLayers = 7
285# up to which layer the ice melt is calculated with the middle temperature
286GlacierTransportZone = 3
287
288# Temperature lapse rate with altitude [deg C / m]
289TemperatureLapseRate = 0.0065 
290# Multiplier applied to precipitation that falls as snow
291SnowFactor = 1.0
292# Range [m C-1 d-1] of the seasonal variation, SnowMeltCoef is the average value
293SnowSeasonAdj = 0.001
294# Average temperature at which snow melts
295TempMelt =1.0
296# Average temperature below which precipitation is snow
297TempSnow = 1.0
298# Snow melt coefficient: default: 4.0 
299# SRM: 0.0045 m/C/day ( = 4.50 mm/C/day), Kwadijk: 18 mm/C/month (= 0.59 mm/C/day)  
300# See also Martinec et al., 1998.
301
302# use in CALIBRATION -> copied to CALIBRATION
303#SnowMeltCoef = 0.004
304IceMeltCoef  = 0.007
305
306#--------------------------------------------------------------
307# INITIAL CONDITIONS - Initial snow depth in snow zone 1-7 [mm]  - SnowCoverIni
308
309[FROST]
310# Snow water equivalent, (based on snow density of 450 kg/m3) (e.g. Tarboton and Luce, 1996)
311SnowWaterEquivalent = 0.45
312# Daily decay coefficient, (Handbook of Hydrology, p. 7.28)
313Afrost = 0.97
314# Snow depth reduction coefficient, [cm-1], (HH, p. 7.28)
315Kfrost = 0.57
316# Degree Days Frost Threshold (stops infiltration, percolation and capillary rise)
317# Molnau and Bissel found a value 56-85 for NW USA.
318FrostIndexThreshold = 56

Note

TemperatureLapseRate = 0.0065 | for the variable TemperatureLapseRate the value of 0.0065 is set

Variables can also be defined by spatial maps or map stacks

tanslope = $(PathTopo)\tanslope.map
forest_coverFractionNC   = $(PathForest)\coverFractionInputForest366days.nc

Note

suffix can be .map, but if there is no PCraster map it will look automatically for netCDF .nc

Warning

in most cases values can be replaced by map

____________________________________________________________________________________________________________

Sections of information

  • Snow

  • Frost

  • General information on land cover types

  • Soil

  • Information for each of the six land cover types
    • Forest

    • Grassland

    • Paddy irrigated area

    • Irrigated area

    • Sealed area

    • Water covered area

  • Interflow

  • Groundwater

  • Water demand

  • Runoff concentration

  • Routing

  • Lakes and reservoirs

  • Inflow

Complete settings file

Example of a settings file:

  1# ------------------------------------------------
  2
  3######## ##          ##  ####  ######  ##    ##
  4##       ##          ## ##  ##   ##   ####  ####
  5##        ##        ##  ##  ##   ##   ## #### ##
  6##        ##   ##   ## ########  ##  ##   ##   ##
  7##         ## #### ##  ##    ##  ##  ##        ##
  8##         ####  #### ##      ## ## ##          ##
  9##########  ##    ##  ##      ## ## ##          ##
 10
 11# Community Water Model Version 0.99
 12# SETTINGS FILE
 13# ------------------------------------------------
 14
 15
 16[OPTIONS]
 17#-------------------------------------------------------
 18# OPTION - to switch on/off
 19#-------------------------------------------------------
 20
 21# Data otions
 22# if temperature is stored in Kelvin instead Celsius
 23TemperatureInKelvin = True
 24# if lat/lon the area has to be user defined = precalculated
 25gridSizeUserDefined = True
 26
 27#-----------------------------------------------
 28# Evaporation: calculate pot. evaporation (True) or use precalculated pot.evaporation map stacks (False)
 29calc_evaporation = False
 30
 31#-----------------------------------------------
 32# Irrigation and water demand
 33
 34# if irrigation is included, otherwise paddy and non paddy is put into 'grassland'
 35includeIrrigation = True
 36# if water demand from irrigation, industry and domestic is included
 37includeWaterDemand = False
 38# Water allocation
 39# if water demand and availability is calculated for region to compare demand vs. avail
 40usingAllocSegments = False
 41# limit abstraction to available groundwater (True) include fossil groundwater (False)
 42limitAbstraction = False
 43
 44# Environmental Flow
 45calc_environflow = False
 46use_environflow = False
 47
 48#-----------------------------------------------
 49# Soil 
 50# use preferential flow, that bypasses the soil matrix and drains directly to the groundwater (not for irrPaddy)
 51preferentialFlow = False
 52# Capillar rise
 53CapillarRise = True
 54
 55#-----------------------------------------------
 56# Routing
 57
 58# if runoff concentration to the edge of a cell is included
 59includeRunoffConcentration = True
 60# Waterbodies like lakes and reservoirs
 61includeWaterBodies = True
 62# kinematic wave routing, if False no routing is calculated
 63includeRouting = True
 64
 65#-----------------------------------------------
 66# Inflow from outside of the modelled area
 67inflow = False
 68
 69# --- Reporting & Debugging ------------------- ----------------------------------------------
 70# Reporting options
 71writeNetcdfStack = True
 72reportMap = True
 73reportTss = True
 74# Checking water balance (for debugging)
 75calcWaterBalance = False
 76sumWaterBalance = False
 77# use additional PCRaster GIS commands
 78PCRaster = False
 79
 80
 81
 82
 83
 84
 85#-------------------------------------------------------
 86# DEFINITIONS OF PARAMETERS
 87#-------------------------------------------------------
 88
 89#-------------------------------------------------------
 90[FILE_PATHS]
 91#-------------------------------------------------------
 92PathRoot = E:/CWATM_rhine
 93
 94PathOut = $(PathRoot)/output
 95PathMaps = $(PathRoot)/cwatm_input
 96PathMeteo = $(PathRoot)/climate
 97
 98
 99
100
101#-------------------------------------------------------
102[NETCDF_ATTRIBUTES]
103institution = IIASA
104title = Global Water Model - WATCH WDFEI
105metaNetcdfFile = $(FILE_PATHS:PathRoot)/source/metaNetcdf.xml
106
107#-------------------------------------------------------
108# AREA AND OUTLETS
109#-------------------------------------------------------
110[MASK_OUTLET]
111
112# Area mask
113# A pcraster map, tif or netcdf map e.g.  $(FILE_PATHS:PathRoot)/data/areamaps/area_indus.map
114# or a retancle: Number of Cols, Number of rows, cellsize, upper left corner X, upper left corner Y 
115MaskMap = $(FILE_PATHS:PathRoot)/source/rhine30min.tif
116#MaskMap = 14 12 0.5 5.0 52.0
117
118
119#-------------------------------------------------------
120# Station data
121# either a map e.g. $(FILE_PATHS:PathRoot)/data/areamaps/area3.map
122# or a location coordinates (X,Y) e.g. 5.75 52.25 9.25 49.75 )
123# Lobith/Rhine
124Gauges = 6.25 51.75
125
126# if .tif file for gauges, this is a flag if the file is global or local
127# e.g. Gauges = $(FILE_PATHS:PathRoot)/data/areamaps/gaugesRhine.tif
128GaugesLocal = True
129
130#-------------------------------------------------------
131[TIME-RELATED_CONSTANTS]
132#-------------------------------------------------------
133
134# StepStart has to be a date e.g. 01/06/1990
135# SpinUp or StepEnd either date or numbers 
136# SpinUp: from this date output is generated (up to this day: warm up)
137
138StepStart = 1/1/1990
139SpinUp =  1/01/1995
140StepEnd =  31/12/2010
141
142
143
144
145#-------------------------------------------------------
146[INITITIAL CONDITIONS]
147#-------------------------------------------------------
148
149# for a warm start initial variables a loaded
150# e.g for a start on 01/01/2010 load variable from 31/12/2009
151load_initial = False
152initLoad = $(FILE_PATHS:PathRoot)/init/Rhine_19891231.nc
153
154# saving variables from this run, to initiate a warm start next run
155# StepInit = saving date, can be more than one: 10/01/1973 20/01/1973
156save_initial = False
157initSave = $(FILE_PATHS:PathRoot)/init/Rhine
158StepInit = 31/12/1989 31/12/2010
159
160#-------------------------------------------------------
161# CALIBARTION PARAMETERS
162#-------------------------------------------------------
163[CALIBRATION]
164
165# These are parameter which are used for calibration
166# could be any parameter, but for an easier overview, tehey are collected here
167# in the calibration template a placeholder (e.g. %arnoBeta) instead of value
168
169# Snow  
170SnowMeltCoef = 0.0027
171# Cropf factor correction  
172crop_correct =  1.11
173#Soil
174soildepth_factor = 1.28
175#Soil preferentialFlowConstant = 4.0, arnoBeta_add = 0.1
176preferentialFlowConstant = 4.5
177arnoBeta_add = 0.19
178# interflow part of recharge factor = 1.0
179factor_interflow = 2.8
180# groundwater recessionCoeff_factor = 1.0
181recessionCoeff_factor = 5.278
182# runoff concentration factor runoffConc_factor = 1.0
183runoffConc_factor = 0.1
184#Routing manningsN Factor to Manning's roughness = 1.0 [0.1-10.]
185manningsN = 1.86
186# reservoir  normal storage limit (fraction of total storage, [-]) [0.15 - 0.85] default 0.5
187normalStorageLimit = 0.44
188# lake parameter - factor to alpha: parameter of of channel width and weir coefficient  [0.33 - 3.] dafault 1.
189lakeAFactor = 0.33
190# lake parameter - factor for wind evaporation
191lakeEvaFactor = 1.52
192#-------------------------------------------------------
193# TOPOGRAPHY MAPS
194#-------------------------------------------------------
195[TOPOP]
196# local drain direction map (1-9)
197Ldd = $(FILE_PATHS:PathMaps)/routing/ldd.map
198
199# Elevation standard deviation [m], i.e. altitude difference elevation within pixel.
200# Used for sub-pixel modelling of snow accumulation and melt
201ElevationStD = $(FILE_PATHS:PathMaps)/landsurface/topo/elvstd.map
202
203# Area of pixel [m2] (for lat/lon every cell has a different area)
204CellArea = $(FILE_PATHS:PathMaps)/routing/cellarea.map
205
206#-------------------------------------------------------
207# INPUT METEOROLOGICAL TIMESERIES AS MAPS
208#-------------------------------------------------------
209[METEO]
210# precipitation [kg m-2 s-1]
211#PrecipitationMaps = $(FILE_PATHS:PathMeteo)/pr*
212PrecipitationMaps = $(FILE_PATHS:PathMeteo)/30min/pr_rhine*
213# average daily temperature [K]
214#TavgMaps = $(FILE_PATHS:PathMeteo)/tavg*
215TavgMaps = $(FILE_PATHS:PathMeteo)/30min/tavg_rhine*
216
217# ----------------------------------------
218# This is used if calc_evaporation = False
219
220# daily reference evaporation (free water) 
221E0Maps = $(FILE_PATHS:PathMeteo)/30min/EWRef_rhine.nc
222#E0Maps = $(FILE_PATHS:PathMeteo)/EWRef_daily*
223# daily reference evapotranspiration (crop) 
224ETMaps = $(FILE_PATHS:PathMeteo)/30min/ETRef_rhine.nc
225#ETMaps = $(FILE_PATHS:PathMeteo)/ETRef_daily*
226
227# --------------------------------
228# from kg m-2s-1 to m : 86.4
229precipitation_coversion = 86.4
230
231# from MM to m : 0.001
232#precipitation_coversion = 0.001
233
234evaporation_coversion = 1.00
235
236# OUTPUT maps and timeseries
237#OUT_Dir = $(FILE_PATHS:PathOut)
238#OUT_MAP_Daily = Precipitation, prec1
239
240#-------------------------------------------------------
241# CALCULATE EVAPORATION - PENMAN - MONTEITH
242#-------------------------------------------------------
243[EVAPORATION]
244
245# This is used if calc_evaporation = True
246# use albedo maps
247albedo = True
248albedoMaps = $(FILE_PATHS:PathMaps)/landsurface/albedo/albedo.nc 
249
250# if not albedo maps use fixed albedo
251# Albedo of bare soil surface (Supit et. al.)
252AlbedoSoil = 0.15
253# Albedo of water surface (Supit et. al.)
254AlbedoWater = 0.05
255# Albedo of vegetation canopy (FAO,1998)
256AlbedoCanopy = 0.23
257
258# use specific humidity (TRUE) QAir,  or relative humidity (FALSE) - rhs
259useHuss = False
260
261# map stacks Temperature [K}]
262TminMaps = $(FILE_PATHS:PathMeteo)/tmin*
263TmaxMaps = $(FILE_PATHS:PathMeteo)/tmax*
264# Instantaneous surface pressure[Pa]
265PSurfMaps = $(FILE_PATHS:PathMeteo)/ps*
266# 2 m istantaneous specific humidity[kg /kg] (QAir) or relative humidity [%] (rhs)
267RhsMaps = $(FILE_PATHS:PathMeteo)/hurs*
268# wind speed maps at 10m [m/s]
269WindMaps = $(FILE_PATHS:PathMeteo)/wind*
270# radiation surface downwelling shortwave maps  [W/m2]
271RSDSMaps = $(FILE_PATHS:PathMeteo)/rsds*
272# radiation surface downwelling longwave maps [W/m2] [W/m2]
273RSDLMaps = $(FILE_PATHS:PathMeteo)/rlds*
274
275# OUTPUT maps and timeseries
276#OUT_Dir = $(FILE_PATHS:PathOut)
277#OUT_MAP_Daily = EWRef, ETRef, temp, prec
278
279#-------------------------------------------------------
280[SNOW]
281#-------------------------------------------------------
282
283# Number of vertical Snow layers
284NumberSnowLayers = 7
285# up to which layer the ice melt is calculated with the middle temperature
286GlacierTransportZone = 3
287
288# Temperature lapse rate with altitude [deg C / m]
289TemperatureLapseRate = 0.0065 
290# Multiplier applied to precipitation that falls as snow
291SnowFactor = 1.0
292# Range [m C-1 d-1] of the seasonal variation, SnowMeltCoef is the average value
293SnowSeasonAdj = 0.001
294# Average temperature at which snow melts
295TempMelt =1.0
296# Average temperature below which precipitation is snow
297TempSnow = 1.0
298# Snow melt coefficient: default: 4.0 
299# SRM: 0.0045 m/C/day ( = 4.50 mm/C/day), Kwadijk: 18 mm/C/month (= 0.59 mm/C/day)  
300# See also Martinec et al., 1998.
301
302# use in CALIBRATION -> copied to CALIBRATION
303#SnowMeltCoef = 0.004
304IceMeltCoef  = 0.007
305
306#--------------------------------------------------------------
307# INITIAL CONDITIONS - Initial snow depth in snow zone 1-7 [mm]  - SnowCoverIni
308
309[FROST]
310# Snow water equivalent, (based on snow density of 450 kg/m3) (e.g. Tarboton and Luce, 1996)
311SnowWaterEquivalent = 0.45
312# Daily decay coefficient, (Handbook of Hydrology, p. 7.28)
313Afrost = 0.97
314# Snow depth reduction coefficient, [cm-1], (HH, p. 7.28)
315Kfrost = 0.57
316# Degree Days Frost Threshold (stops infiltration, percolation and capillary rise)
317# Molnau and Bissel found a value 56-85 for NW USA.
318FrostIndexThreshold = 56
319
320#--------------------------------------------------------------
321# INITIAL CONDITIONS: FrostIndexIni
322
323[VEGETATION]
324cropgroupnumber = $(FILE_PATHS:PathMaps)/others/cropgrp.nc
325# soil water depletion fraction, Van Diepen et al., 1988: WOFOST 6.0, p.86, Doorenbos et. al 1978
326
327#-------------------------------------------------------
328[SOIL]
329#-------------------------------------------------------
330
331PathTopo = $(FILE_PATHS:PathMaps)/landsurface/topo
332PathSoil = $(FILE_PATHS:PathMaps)/landsurface/soil
333PathSoil1 =  $(FILE_PATHS:PathMaps)/others
334
335# Topography - tangent slope, slope length  
336tanslope = $(PathTopo)/tanslope.map
337slopeLength = $(PathTopo)/slopeLength.map
338
339# maps of relative elevation above flood plains
340relativeElevation = $(PathTopo)/dzRel_hydro1k.nc
341
342# Soil hydraulic properties
343
344# soil (Hypres pedotransfer function - http://esdac.jrc.ec.europa.eu/ESDB_Archive/ESDBv2/popup/hy_param.htm)
345KSat1 = $(PathSoil1)/ksat1.map
346KSat2 = $(PathSoil1)/ksat2.map
347KSat3 = $(PathSoil1)/ksat3.map
348# Alpha: an Genuchten’s shape parameter
349alpha1 = $(PathSoil1)/alpha1.map
350alpha2 = $(PathSoil1)/alpha2.map
351alpha3 = $(PathSoil1)/alpha3.map
352#Lambda: an Genuchten’s shape parameter = n-1-> n = lamda+1, m = 1 - (1/n)
353lambda1 = $(PathSoil1)/lambda1.map
354lambda2 = $(PathSoil1)/lambda2.map
355lambda3 = $(PathSoil1)/lambda3.map
356# thetas  is the volumetric water content θ saturated 
357thetas1 = $(PathSoil1)/thetas1.map
358thetas2 = $(PathSoil1)/thetas2.map
359thetas3 = $(PathSoil1)/thetas3.map
360# thetar is the volumetric water content θ residual 
361thetar1 = $(PathSoil1)/thetar1.map
362thetar2 = $(PathSoil1)/thetar2.map
363thetar3 = $(PathSoil1)/thetar3.map
364
365percolationImp = $(PathSoil)/percolationImp.map
366
367maxGWCapRise    = 5.0
368
369minCropKC        = 0.2
370minTopWaterLayer = 0.0
371
372# Soil depth
373StorDepth1 = $(PathSoil)/storageDepth1.map
374StorDepth2 = $(PathSoil)/storageDepth2.map
375
376# preferential flow (between 1.0 and 8.0)
377# used in CALIBRATION -> copied to CALIBRATION
378#preferentialFlowConstant = 4.0
379
380#-------------------------------------------------------
381[LANDCOVER]
382PathLandcover = $(FILE_PATHS:PathMaps)/landsurface
383
384coverTypes = forest, grassland, irrPaddy, irrNonPaddy, sealed, water
385coverTypesShort = f, g, i, n, s, w
386fractionLandcover = $(PathLandcover)/fractionLandcover.nc
387
388# Landcover can vary from year to year
389dynamicLandcover = True
390# if landcover cannot vary, which year should be taken as fixed year
391fixLandcoverYear = 1961
392
393#-------------------------------------------------------
394
395[__forest]
396PathForest = $(FILE_PATHS:PathMaps)/landcover/forest
397PathSoil1 =  $(FILE_PATHS:PathMaps)/others
398
399# Parameters for the Arno's scheme 
400# arnoBeta is defined by orographic,+ land cover add + calibration add, the soil water capacity distribution is based on this 
401# range [0.01 - 1.2]
402forest_arnoBeta = 0.2
403
404#forest_soil
405forest_KSat1 = $(PathSoil1)/forest_ksat1.map
406forest_KSat2 = $(PathSoil1)/forest_ksat2.map
407forest_KSat3 = $(PathSoil1)/ksat3.map
408forest_alpha1 = $(PathSoil1)/forest_alpha1.map
409forest_alpha2 = $(PathSoil1)/forest_alpha2.map
410forest_alpha3 = $(PathSoil1)/alpha3.map
411forest_lambda1 = $(PathSoil1)/forest_lambda1.map
412forest_lambda2 = $(PathSoil1)/forest_lambda2.map
413forest_lambda3 = $(PathSoil1)/lambda3.map
414forest_thetas1 = $(PathSoil1)/forest_thetas1.map
415forest_thetas2 = $(PathSoil1)/forest_thetas2.map
416forest_thetas3 = $(PathSoil1)/thetas3.map
417forest_thetar1 = $(PathSoil1)/forest_thetar1.map
418forest_thetar2 = $(PathSoil1)/forest_thetar2.map
419forest_thetar3 = $(PathSoil1)/thetar3.map
420
421# other paramater values
422forest_minInterceptCap  = 0.001
423forest_cropDeplFactor   = 0.0
424
425forest_fracVegCover  = $(PathForest)/fracVegCover.map
426forest_rootFraction1 = $(PathForest)/rootFraction1.map
427forest_rootFraction2 = $(PathForest)/rootFraction2.map
428#forest_maxRootDepth  = 2.0
429forest_maxRootDepth  = $(PathForest)/maxRootDepth.map
430forest_minSoilDepthFrac = $(PathForest)/minSoilDepthFrac.map
431
432
433forest_cropCoefficientNC = $(PathForest)/CropCoefficientForest_10days.nc
434forest_interceptCapNC    = $(PathForest)/interceptCapForest10days.nc
435
436# initial conditions: forest_interceptStor, forest_w1, forest_w2, forest_w3, 
437
438
439[__grassland]
440PathGrassland = $(FILE_PATHS:PathMaps)/landcover/grassland
441
442# Parameters for the Arno's scheme: 
443grassland_arnoBeta = 0.0
444# arnoBeta is defined by orographic,+ land cover add + calibration add, the soil water capacity distribution is based on this
445# range [0.01 - 1.2]
446
447# other paramater values
448
449grassland_minInterceptCap  = 0.001
450grassland_cropDeplFactor   = 0.0
451
452grassland_fracVegCover  = $(PathGrassland)/fracVegCover.map
453grassland_rootFraction1 = $(PathGrassland)/rootFraction1.map
454grassland_rootFraction2 = $(PathGrassland)/rootFraction2.map
455grassland_maxRootDepth  = $(PathGrassland)/maxRootDepth.map
456grassland_minSoilDepthFrac = $(PathGrassland)/minSoilDepthFrac.map
457
458
459grassland_cropCoefficientNC = $(PathGrassland)/CropCoefficientGrassland_10days.nc
460grassland_interceptCapNC    = $(PathGrassland)/interceptCapGrassland10days.nc
461
462# initial conditions: grassland_interceptSto, grassland_w1, grassland_w2, grassland_w3
463
464
465[__irrPaddy]
466PathIrrPaddy = $(FILE_PATHS:PathMaps)/landcover/irrPaddy
467
468# Parameters for the Arno's scheme:
469irrPaddy_arnoBeta = 0.2
470# arnoBeta is defined by orographic,+ land cover add + calibration add, the soil water capacity distribution is based on this
471# range [0.01 - 1.2]
472
473# other paramater values
474
475irrPaddy_minInterceptCap  = 0.001
476irrPaddy_cropDeplFactor   = 0.0
477
478irrPaddy_fracVegCover  = $(PathIrrPaddy)/fracVegCover.map
479irrPaddy_rootFraction1 = $(PathIrrPaddy)/rootFraction1.map
480irrPaddy_rootFraction2 = $(PathIrrPaddy)/rootFraction2.map
481irrPaddy_maxRootDepth  = $(PathIrrPaddy)/maxRootDepth.map
482irrPaddy_minSoilDepthFrac = $(PathIrrPaddy)/minSoilDepthFrac.map
483
484irrPaddy_cropCoefficientNC = $(PathIrrPaddy)/CropCoefficientirrPaddy_10days.nc
485
486# maximum flooding depth for paddy
487irrPaddy_maxtopwater = 0.05
488
489
490
491# initial conditions: irrPaddy_interceptStor, irrPaddy_w1, irrPaddy_w2, irrPaddy_w3
492
493
494
495[__irrNonPaddy]
496PathIrrNonPaddy = $(FILE_PATHS:PathMaps)/landcover/irrNonPaddy
497
498# Parameters for the Arno's scheme:
499irrNonPaddy_arnoBeta = 0.2
500# arnoBeta is defined by orographic,+ land cover add + calibration add, the soil water capacity distribution is based on this
501# range [0.01 - 1.2]
502
503# other paramater values
504
505
506irrNonPaddy_minInterceptCap  = 0.001
507irrNonPaddy_cropDeplFactor   = 0.0
508
509irrNonPaddy_fracVegCover  = $(PathIrrNonPaddy)/fracVegCover.map
510irrNonPaddy_rootFraction1 = $(PathIrrNonPaddy)/rootFraction1.map
511irrNonPaddy_rootFraction2 = $(PathIrrNonPaddy)/rootFraction2.map
512irrNonPaddy_maxRootDepth  = $(PathIrrNonPaddy)/maxRootDepth.map
513irrNonPaddy_minSoilDepthFrac = $(PathIrrNonPaddy)/minSoilDepthFrac.map
514
515
516irrNonPaddy_cropCoefficientNC = $(PathIrrNonPaddy)/CropCoefficientirrNonPaddy_10days.nc
517
518
519# initial conditions: irrNonPaddy_interceptStor, irrNonPaddy_w1, irrNonPaddy_w2, irrNonPaddy_w3
520
521
522[__sealed]
523PathSealed = $(FILE_PATHS:PathMaps)/landcover/sealed
524
525sealed_minInterceptCap  = 0.001
526
527# initial conditions: sealed_interceptStor
528
529
530[__open_water]
531PathWater = $(FILE_PATHS:PathMaps)/landcover/water
532
533water_minInterceptCap  = 0.0
534
535#-------------------------------------------------------
536[GROUNDWATER]
537#-------------------------------------------------------
538
539PathGroundwater = $(FILE_PATHS:PathMaps)/groundwater
540
541recessionCoeff = $(PathGroundwater)/recessionCoeff.map
542# baseflow = recessionCoeff * storage groundwater
543specificYield = $(PathGroundwater)/specificYield.map
544kSatAquifer = $(PathGroundwater)/kSatAquifer.map
545# both not used at the moment in groundwater modul, but already loaded
546
547#--------------------------------------------------------------
548# INITIAL CONDITIONS: storGroundwater
549
550
551#-------------------------------------------------------
552[WATERDEMAND]
553#-------------------------------------------------------
554
555PathWaterdemand = $(FILE_PATHS:PathMaps)/landsurface/waterDemand
556# For water demand vs. availability: areas have to be aggregated
557# Allocation map
558allocSegments = $(PathWaterdemand)/catchx.nc
559
560domesticWaterDemandFile = $(PathWaterdemand)/domesticWaterDemand.nc
561industryWaterDemandFile = $(PathWaterdemand)/industryWaterDemand.nc
562
563irrNonPaddy_efficiency = $(FILE_PATHS:PathMaps)/landsurface/waterDemand/efficiency.nc
564irrPaddy_efficiency = $(FILE_PATHS:PathMaps)/landsurface/waterDemand/efficiency.nc
565
566#irrNonPaddy_efficiency = 0.8
567#irrPaddy_efficiency = 0.8
568irrigation_returnfraction = 0.5
569
570# -----------------------------------------------------------
571# Estimate of fractions of groundwater and surface water abstractions
572# Either a fixed fraction for surface water abstration
573# based on fraction of average baseflow and upstream average discharge 
574# if swAbstractionFrac < 0: fraction is taken from baseflow / discharge 
575# if swAbstractionFrac > 0 this value is taken as a fixed value 
576swAbstractionFrac = 0.9
577averageDischarge = $(FILE_PATHS:PathOut)/discharge_totalavg_rhine30min.nc
578# in [m3/s]
579averageBaseflow  = $(FILE_PATHS:PathOut)/baseflow_totalavg_rhine30min.nc
580# in [m3/s]
581baseflowInM = True
582# if baseflow is in [m] instead of [m3/s] it will be converted
583
584
585#-------------------------------------------------------
586# RUNOFF CONCENTRATION
587#-------------------------------------------------------
588[RUNOFF_CONCENTRATION]
589
590# using triagular weigthning method
591# the bigger the factor, more lag time 
592forest_runoff_peaktime = 1.0
593grassland_runoff_peaktime = 0.5
594irrPaddy_runoff_peaktime = 0.5
595irrNonPaddy_runoff_peaktime = 0.5
596sealed_runoff_peaktime = 0.15 
597water_runoff_peaktime = 0.01
598
599interflow_runoff_peaktime =1.0
600baseflow_runoff_peaktime = 2.0
601
602# initial conditions:
603# here only 1 layer is shown, but there are up to 10: runoff_concIni
604
605
606#-------------------------------------------------------
607# ROUTING MAPS and PARAMETERSD
608#-------------------------------------------------------
609[ROUTING]
610
611PathRouting = $(FILE_PATHS:PathMaps)/routing
612
613# Number of substep per day
614# should be 10 for 0.5 deg but 24 for 0.1 deg
615
616NoRoutingSteps = 10
617#kinematic wave parameter: 0.6 is for broad sheet flow
618chanBeta = 0.6
619
620# Channel gradient (fraction, dy/dx)
621chanGrad = $(PathRouting)/kinematic/changrad.nc
622# Minimum channel gradient (for kin. wave: slope cannot be 0)
623chanGradMin = 0.0001
624
625#Channel Manning's n
626chanMan = $(PathRouting)/kinematic/chanman.nc
627#Channel length [meters]
628chanLength = $(PathRouting)/kinematic/chanleng.nc
629#Channel bottom width [meters]
630chanWidth = $(PathRouting)/kinematic/chanbw.nc
631#Bankfull channel depth [meters]
632chanDepth = $(PathRouting)/kinematic/chanbnkf.nc
633
634# initial conditions: channelStorageIni, riverbedExchangeIni, dischargeIni  
635
636#-------------------------------------------------------
637# LAKES AND RESERVOIRS
638#-------------------------------------------------------
639[LAKES_RESERVOIRS]
640
641PathLakesRes = $(FILE_PATHS:PathMaps)/routing/lakesreservoirs
642
643# Use reservoirs and lakes (otherwise use only lakes Lake ID=1 and 3 => natural conditions)
644useResAndLakes = True
645# Reservoirs do have a year of implementation
646dynamicLakesRes = True
647# if Reservoirs does not have a year of implemtation, which year should be taken as fixed year
648fixLakesResYear = 1950
649
650
651#----------------------------
652#Big lakes and Reservoirs
653
654# ID of every lake, reservoir from HydroLakes database
655waterBodyID = $(PathLakesRes)/lakesResID.nc
656# 1 for lake, 2 for reservoir, 3 for lake and reservoir
657waterBodyTyp = $(PathLakesRes)/lakesResType.nc
658# Avergae discharge from HydroLakes Database
659waterBodyDis = $(PathLakesRes)/lakesResDis.nc
660
661# Lakes surface area from HydroLakes Database 
662waterBodyArea = $(PathLakesRes)/lakesResArea.nc
663# a factor to scale the outlet of a lake
664#lakeAFactor = 1.0  -> calibration
665
666#----------------------------
667# Small lakes and reservoirs
668
669useSmallLakes = True
670
671smallLakesRes = $(PathLakesRes)/smallLakesRes.nc
672smallwaterBodyDis = $(PathLakesRes)/smalllakesresDis.nc
673
674# averageRunoff in [m] (if not given smallwaterBodyDis is taken instead)
675#averageRunoff  = $(FILE_PATHS:PathOut)/runoff_totalavg_cali.nc
676
677# for water demand
678#min storage in [m3] (if not give it is calculated)
679#minStorage  = $(FILE_PATHS:PathOut)/minsmalllakeStorage_cali.nc
680
681
682# initial conditions: lakeInflowIni, lakeStorageIni, outLakeIni, lakeOutflowIni, reservoirStorageIni 
683
684#------------------
685# Reservoirs
686# reservoir volume from HydroLakes database
687waterBodyVolRes = $(PathLakesRes)/lakesResVolRes.nc
688# reservoir starting year from HydroLakes database 
689waterBodyYear = $(PathLakesRes)/lakesResYear.nc
690
691#  Conservative, normal and flood storage limit (fraction of total storage, [-])
692conservativeStorageLimit = 0.1
693#normalStorageLimit = 0.5   # --> put into calibration
694floodStorageLimit = 0.9
695# adjusting the balance between normal and flood storage
696# [0 ..1]  0: NormalstorageLimit      1: (= closer to flood) results in keeping the normal qoutflow longer constant
697adjust_Normal_Flood = 0.5
698
699# Minimum, Normal and Non-damaging reservoir outflow  (fraction of average discharge, [-])
700MinOutflowQ = 0.2
701NormalOutflowQ = 1.0
702NonDamagingOutflowQ = 4.0
703
704# initial conditions: lakeInflowIni, lakeStorageIni, outLakeIni, lakeOutflowIni, reservoirStorageIni 
705
706
707#-------------------------------------------------------
708[INFLOW]
709#-------------------------------------------------------
710
711# if option inflow = true
712# the inflow from outside is added at inflowpoints
713In_Dir = $(FILE_PATHS:PathRoot)/in
714
715# nominal map with locations of (measured)inflow hydrographs [cu m / s]
716InflowPoints = $(In_Dir)/in.map
717#InflowPoints = 8.25 49.75 7.75 50.25
718
719# if InflowPoints is a map, this flag is to identify if it is global (False) or local (True)
720# observed or simulated input hydrographs as time series [cu m / s]
721# Note: that identifiers in time series have to correspond to InflowPoints
722# can be several timeseries in one file or different files e.g. main.tss mosel.tss
723#QInTS = main1.tss mosel1.tss
724QInTS = mm.tss
725
726
727
728#-------------------------------------------------------
729[ENVIRONMENTALFLOW]
730#-------------------------------------------------------
731
732# Either calculate without run with predone discharge (set calc_ef_after = False)
733calc_ef_after = True
734# Or calculate after run (set calc_ef_after = False) and defining the file to be used
735EFDis = $(FILE_PATHS:PathOut)/discharge_rhine.nc
736
737# if predone discharge, do the maps need to be cut to fit to the mask?
738cut_ef_map = False
739
740EnvironmentalFlowFile = $(FILE_PATHS:PathOut)/MQ90_12month.nc
741
742# MAF: Mean, Q90: percentile 90, MMF: monthly average, MQ90: monthly Q90 9averagwed over al Jan, Feb..
743# EF_VMF: Environmental flow - variable monthly flow, EF_VMF_LIH - EF- variable monthly flow, high intermediate, low class
744OUT_Dir = $(FILE_PATHS:PathOut)
745#OUT_MAP_Once = MAF, Q90
746#OUT_MAP_12month = MMF, MQ90, EF_VMF, EF_VMF_LIH
747#OUT_MAP_12month = MQ90, EF_VMF
748
749
750
751#+++++++++++++++++++++++++++++++++++++++++++++++++++++++
752#+++++++++++++++++++++++++++++++++++++++++++++++++++++++
753
754
755[OUTPUT]
756
757# OUTPUT maps and timeseries
758OUT_Dir = $(FILE_PATHS:PathOut)
759
760OUT_TSS_Daily = discharge
761#OUT_TSS_MonthAvg = discharge
762#OUT_TSS_AnnualAvg = discharge
763
764#OUT_Map_Daily = discharge
765#OUT_Map_MonthAvg = discharge, precipitation, runoff
766#OUT_Map_AnnualAvg = discharge
767#OUT_MAP_TotalAvg = discharge, baseflow
768
769
770
771

NetCDF meta data

Output Meta NetCDF information

The metaNetcdf.xml includes information on the output netCDF files e.g. description of the parameter, unit ..

Example of a metaNetcdf.xml file:

<CWATM>
# METADATA for NETCDF OUTPUT DATA

# varname: name of the variable in the CWAT code
# unit: unit of the varibale
# long name# standard name

# Discharge maps 
<metanetcdf varname="discharge" unit="m3/s"  standard_name="Discharge" long_name="Discharge in cubic meter per second"  title="1st Demo CWATM" author="PB" />

# others
<metanetcdf varname="soilmoisture" unit="mm"  standard_name="soil moisture" long_name="Soil moisture"  title ="1st Demo CWATM" author="PB" />

# Initial condition Files
<metanetcdf varname="initcondition"  purpose ="Initial Conditions CWATM" author="PB" />
<metanetcdf varname="SnowCover1" unit="mm"  standard_name="SnowCover1" long_name="Snow cover top layer"  />
<metanetcdf varname="SnowCover2" unit="mm"  standard_name="SnowCover2" long_name="Snow cover middle layer"  />
<metanetcdf varname="SnowCover3" unit="mm"  standard_name="SnowCover3" long_name="Snow cover lower layer"  />
<metanetcdf varname="FrostIndex" unit="degree/days"  standard_name="FrostIndex" long_name="Frost index based on Molnau, Bissel (1983)"  />
</CWATM>

Name and location of the NetCDF meta data file

In the settings file the name and location of the metadata file is given.

#-------------------------------------------------------
[NETCDF_ATTRIBUTES]
institution = IIASA
title = Global Water Model - WATCH WDFEI
metaNetcdfFile = $(FILE_PATHS:PathRoot)/cwatm/metaNetcdf.xml

Initialisation

CWatM needs to have estimates of the initial state of the internal storage variables, e.g. the amount of water stored in snow, soil, groundwater etc.

There are two possibilities:

  1. The initial state of the internal storage variables are unknown and a first guess has to be used e.g. all storage variables are half filled.

  2. The initial state is known from a previous run, where the variables are stored at a certain time step. This is called warm start

The warm start is usful for:

  • using a long pre-run to find the steady-state storage of the groundwater storage and use it as initial value

  • using the stored variables to shorten the warm-up period

  • using the stored variables to restart every day with the values from the previous day (forecasting mode)

Example of soil moisture

The next figure shows the impact of different initial condition on the soil moisture of the lower soil. In one of the simulations the soil is initially almost completely saturated. In another simulation the soil is completely dry and the third simulation starts with initial conditions in between the two extremes.

In the beginning the effect of different initial condition can be seen clearly. But after one year the three curves converge. The memory of the lower soil goes back for about one year.

For all the initial condition apart from groundwater, lakes and reservoirs the memory is about 12 month.

_images/init_soilmoisture.jpg

Figure: Simulation of soil moisture in the lower soil with different initial conditions

For the groundwater zone a longer warm-up period is needed, because of the slow response of groundwater. Here a rather fast reacting groundwater storage is shown with the three curves coverge after two years. We propose a warm-up of several decades. The longer the better.

_images/init_groundwater.jpg

Figure: Simulation of groundwater storage with different initial conditions

Cold start

For a cold start the values of the storage variables are unknown and set to a “first” guess. A list of variables and their default value for a cold start is given below in: Initial conditions

Set up a cold start in the settingsfile

In the settings file the option: load_initial has to be set on False

145#-------------------------------------------------------
146[INITITIAL CONDITIONS]
147#-------------------------------------------------------
148
149# for a warm start initial variables a loaded
150# e.g for a start on 01/01/2010 load variable from 31/12/2009
151load_initial = False
152initLoad = $(FILE_PATHS:PathRoot)/init/Rhine_19891231.nc

Note

It is possible to exclude the warming up period of your model run for further analysis of results by setting the SpinUp option

[TIME-RELATED_CONSTANTS]
SpinUp =  01/01/1995

Storing initial variables

In the settings file the option save_initial has to be set to True

The name of the initial netCDF4 file has to be put in initsave

and one or more dates have to be specified in StepInit

154# saving variables from this run, to initiate a warm start next run
155# StepInit = saving date, can be more than one: 10/01/1973 20/01/1973
156save_initial = False
157initSave = $(FILE_PATHS:PathRoot)/init/Rhine
158StepInit = 31/12/1989 31/12/2010

Warm start

CWatM can write internal variables to a netCDF file for choosen timesteps. These netCDF files can be used as the initial conditions for a suceeding simulation.

This is useful for establishing a steady-state after a long-term run and then using this steady-state for succeding simulations or for an every day run (forecasting mode)

Warning

If the parameters are changed after a run(especially the groundwater, lakes and reservoir parameters) the stored initial values do not represent the conditions of the storage variables. Stored initial conditions should not be used as initial values for a model run with another set of parameters. If you do this during calibration, you will not be able to reproduce the calibration results!

Set up a cold start in the settingsfile

In the settings file the option: load_initial has to be set on True And define the name of the netcdf4 file in initLoad

Note

Use the initial values of the previous day here. E.g. if you run the model from 01/01/2006 use the inital condition from 31/12/2005

145#-------------------------------------------------------
146[INITITIAL CONDITIONS]
147#-------------------------------------------------------
148
149# for a warm start initial variables a loaded
150# e.g for a start on 01/01/2010 load variable from 31/12/2009
151load_initial = False
152initLoad = $(FILE_PATHS:PathRoot)/init/Rhine_19891231.nc

Initial conditions

No.

Variable

Description

Default value

Number of maps

1

SnowCover

Snow cover for up to 7 zones

0

7

2

FrostIndex

Degree days frost threshold

0

1

3

Forest state

Interception storage

0

1

Top water layer

0

1

Soil storage for 3 soil layers

0

3

4

Grassland state

Interception storage

0

1

Top water layer

0

1

Soil storage for 3 soil layers

0

3

5

Paddy irrigation state

Interception storage

0

1

Top water layer

0

1

Soil storage for 3 soil layers

0

3

6

Irrigation state

Interception storage

0

1

Top water layer

0

1

Soil storage for 3 soil layers

0

3

7

Sealed area state

Interception storage

0

1

8

Groundwater

Groundwater storage

0

1

9

Runoff concentration

10 layers of runoff concentration

0

10

10

Routing

Channel storage

0.2 * total cross section

1

Routing

Riverbed exchange

0

1

Routing

Discharge

depending on ini channel stor.

1

11

Lakes and Reservoirs

Lake inflow

from HydroLakes database

1

Lake outflow

same as lake inflow

1

Lake&Res outflow to other lakes&res

same as lake inflow

1

Lake storage

based on inflow and lake area

1

Reservoir storage

0.5 * max. reservoir storage

1

Small lake storage

based on inflow and lake area

1

Small lake inflow

from HydroLakes database

1

Small lake outflow

same as small lake inflow

1

Model Output

An advantage of CWatM is the full flexibility of the output variables.

  • All parameters and variables can be used for output as maps or time series.

  • Even if the model is run at daily timestep, output can be daily, monthly, annual, at the end of a run

  • all variables maps are stored as netcdf and the meta data information can be added

Time depending and non depending output maps

Output maps will be produced as spatial maps, stack of spatial maps (over time)
Format: netCDF

The netCDF maps can be read with:

Windows

Linux

Or time series at specified points

Timeseries are procuded as ASCII files, which can be read with every text editor
The specific point(s) where timeseries are provided are defined in the settings file as Gauges:
Can be several points in the format lon lat lon lat ..
# Station data
# either a map e.g. $(FILE_PATHS:PathRoot)/data/areamaps/area3.map
# or a location coordinates (X,Y) e.g. 5.75 52.25 9.25 49.75 )
# Lobith/Rhine
Gauges = 6.25 51.75 7.75 49.75

# if .tif file for gauges, this is a flag if the file is global or local
# e.g. Gauges = $(FILE_PATHS:PathRoot)/data/areamaps/gaugesRhine.tif
GaugesLocal = True

Output variables

Output can be every global defined variable in the model Variable are e.g. Precipitation, runoff, baseflow

but also not so common variables as:

  • reservoirStorage (amount of water in the reservoirs in [m3])

  • nonIrrReturnFlowFraction (returnflow from domenstic and industrial water use [m3])

  • actualET[1] (actual evapotranspiration from grassland [m/day])

Daily, monthly - at the end or average

  • per day

  • total month, average month, end of month

  • total year, average year, end of year

  • total average, total at the end

available prefixes are: ‘daily’, ‘monthtot’,’monthavg’, ‘monthend’,’annualtot’,’annualavg’,’annualend’,’totaltot’,’totalavg’

for example

[OUTPUT]
# OUTPUT maps and timeseries
OUT_Dir = $(FILE_PATHS:PathOut)
OUT_MAP_Daily = discharge, runoff
OUT_MAP_MonthAvg = Precipitation
OUT_MAP_TotalEnd = lakeStorage
OUT_MAP_TotalAvg = Tavg

OUT_TSS_Daily = discharge
OUT_TSS_MonthTot = runoff
OUT_TSS_AnnualAvg = Precipitation
OUT_TSS_AnnualTot = runoff

Note

For each variable the meta data information can be defined in Output Meta NetCDF information

Note

For information how to adjust the output in the settings file see Output

Time series as point infomation or catchment sum or average

As standard time series can include values of the specific cell as defined in the settings file as Gauges But time series can also show the area sum or area average of the upstream catchment from the specific cell

for example

[OUTPUT]
# OUTPUT maps and timeseries
# Standard values of a specific cell
OUT_TSS_Daily = discharge
OUT_TSS_AnnualAvg = Precipitation
# Area sum of upstream catchment
OUT_TSS_AreaSum_MonthTot = Precipitation, runoff
# Area sum of upstream catchment
OUT_TSS_AreaAvg_MonthTot = Precipitation

Most important output variables - a selection

#Variable name    : Description
discharge         : river discharge
runoff            : runoff
Precipitation     : rainfall + snow
Tavg              : average temperature
ETRef: potential  : evaporation from reference soil
sum_gwRecharge    : total groundwater recharge
totalET           : total actual evapotranspiration
baseflow          : baseflow from groundwater
... (to be continued)

Output variables - starting a list

A list of variables can be produced by using:
grep -d recurse ‘self.var.’ *.py
Every self.var.variable can be used as output variable
For a description of the variable please take a look at the python module itself.
.
As output variable please use without self.var.

We started a list of possible output variables. Please note that this list is under construction. We still need to fill in all descriptions and all units. You find this list at List of output variables